Harnessing graphics processing units for improved neuroimaging statistics.
نویسندگان
چکیده
Simple models and algorithms based on restrictive assumptions are often used in the field of neuroimaging for studies involving functional magnetic resonance imaging, voxel based morphometry, and diffusion tensor imaging. Nonparametric statistical methods or flexible Bayesian models can be applied rather easily to yield more trustworthy results. The spatial normalization step required for multisubject studies can also be improved by taking advantage of more robust algorithms for image registration. A common drawback of algorithms based on weaker assumptions, however, is the increase in computational complexity. In this short overview, we will therefore present some examples of how inexpensive PC graphics hardware, normally used for demanding computer games, can be used to enable practical use of more realistic models and accurate algorithms, such that the outcome of neuroimaging studies really can be trusted.
منابع مشابه
Investigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)
Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...
متن کاملCrystalGPU: Transparent and Efficient Utilization of GPU Power
General-purpose computing on graphics processing units (GPGPU) has recently gained considerable attention in various domains such as bioinformatics, databases and distributed computing. GPGPU is based on using the GPU as a co-processor accelerator to offload computationally-intensive tasks from the CPU. This study starts from the observation that a number of GPU features (such as overlapping co...
متن کاملNumerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...
متن کاملGPGPU Processing in CUDA Architecture
The future of computation is the Graphical Processing Unit, i.e. the GPU. The promise that the graphics cards have shown in the field of image processing and accelerated rendering of 3D scenes, and the computational capability that these GPUs possess, they are developing into great parallel computing units. It is quite simple to program a graphics processor to perform general parallel tasks. Bu...
متن کاملPartial wave analysis at BES III harnessing the power of GPUs
Partial wave analysis is a core tool in hadron spectroscopy. With the high statistics data available at facilities such as the Beijing Spectrometer III, this procedure becomes computationally very expensive. We have successfully implemented a framework for performing partial wave analysis on graphics processors. We discuss the implementation, the parallel computing frameworks employed and the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cognitive, affective & behavioral neuroscience
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2013